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A least-squares refinement procedure is developed in which different groups of parameters are defined 
with respect to different axial systems. The parameters are refined by describing the reciprocal-lattice 
vector for a given reflexion with respect to the relevant axial system for each refinable parameter. With 
this procedure features of the structure can be refined in the space most suitable for their description and 
correlations between parameters are either reduced or at least more readily understood. Constrained 
refinement is much simpler algebraically and can be made to be extremely flexible. 

Introduction 

It has been traditional to describe crystal structures in 
terms of axial systems imposed by the repeating nature 
of the crystal using basis vectors a~ and a correspond- 
ing set of reciprocal-space vectors bk where a j .  bk = Jjk 
(Jjk = 0 i f j ¢  k, Jjk = 1 if j =  k; j, k = 1 to 3). 

However there is no need to be restricted to such 
an axial system. For example we can consider a real- 
space set of basis vectors Aj and a corresponding set 
of basis vectors in reciprocal space Bk where A j .  Bk = 
Jjk. If a j .  Bk= Rjk it follows that 

a j =  ~ RjkAk , Bk = ~ Rjkb j , 
k j 

Ak= ~ (R-1)kjaj, b j :  ~ (R-1)kjBk 
j k 

and 

where 
bj . Ak = (R-  1)kj 

R j k ( R - 1 ) k z = ~ j l  . 
k 

Any point r in real space may be described as 

r =  ~ xJaj= ~ XkAk 
j k 

where 

X (R )k~ Xk= ~ xJRjk and x j=  ~ k -1 . 
j k 

Any point S in reciprocal space may be described as 

1 
S =  ~ hjb j= ~ -  ~ tkBk 

where 

h , = 2 n ~  (R-1)kjhj and 2nhj= ~ Rjktk. 
j k 

If we have two different sets of orthonormal basis 
vectors in real space with corresponding vectors in 
reciprocal space then Ak=Bk, PAk=PBk and Ak= 

~u UklPAI where p Ukl = A k . PB z = Bk • PA,. If we de- 
l 
scribe any point r in real space as 

r = ~ PXZPAI 
1 

and any point S in reciprocal space as 

1 
S =  ~ ~ PtlPBl 

then 

PXl= ~ XkPURz and Ph= ~ (PU--~)ZRtk = ~ PUkltk . 
k k k 

Also aj = ~ po PA ~,jz z etc. where 
l 

PRjI = ~ Rjk p Uet . 
k 

The characteristic function or Fourier transform of 
a probability density function of the position of an 
atom in a crystal is expressible in the form 
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i 2 
~,(S)=exp (i ~ :K~t~+ ~. ~ 2,..jk,~, t~ n ~ j t  k 

jg 

i 3 i 4 
_]__~. ~ 3t~jkl, , , k~im • ~, u~,t + 4KSktmt/gtttm+...) (1) 

jk~ -~. j 

w h e r e  i 2 =  _ 1 and the first four cumulant tensors ix,, 2x,, 
3~c,, 41c, describe the mean, the variance covariance, the 
skewness and the kurtosis of the nth probability den- 
sity function. The relationship between this and other 
descriptions of thermal motion is discussed by John- 
son (1970). Equation (1) is obtained by describing the 
reciprocal-lattice vector as 

1 
S = ~ ~ tkB k . 

Pawley (1972) has pointed out that there is no reason 
why the cumulant tensors cannot be refined in an or- 
thonormal space. The tensor quantities ~tc, are defined 
in units of (.~)~ if we use orthonormal basis vectors 
when IAkl = 1/~. Pawley advocates the use of a single 
axial system (Patterson, 1959) in which Al=a~/a~, 
A2 = A3 × A1, and Aa = ba/ba, making (a 0 0) 

Rjk = a2 cos % a2 sin % 0 
aaCOSe2 --aas ine2cosf l l  1/b3 

where oc~,fl~ are the interaxial angles of the crystallo- 
graphic unit cell in real space and reciprocal space 
respectively. This choice contrasts with the orthonor- 
mal basis vectors B~=bl/b~, Bz=B~ ×B~, and B 3 =  

aa/a3 used by Busing & Levy (1967) as a reference 
frame for data collection. 

It should be pointed out however that Miller indices 
are still the obvious way to index reflexions and that 
probability density maps can be calculated much more 
rapidly using Miller indices and fractional coordinates. 

The real benefits of orthonormal axial systems are 
noted when attempts are made to analyse thermal par- 
ameters (Schomaker & Trueblood, 1968) and when 
constraints are used in the least-squares refinement 
(Pawley, 1972) since the algebra is then simplified. The 
evaluation of principal axes of vibration (Waser, 1955; 
Busing & Levy, 1958) and the graphical representation 
of structures (Johnson, 1965) is also much simplified. 

However the real reason for transforming a refine- 
ment problem is to reduce correlations between re- 
finable parameters so that little error will occur in par- 
ameters when other parameters are either held con- 
stant or omitted. For each refinement cycle we need 
to set up least-squares equations requiring the evalua- 
tion of OF(S)/8u~ for various parameters uq. 

If the parameters uq are described with respect to 
different axial systems then ~F(S)/Ouq is most easily 
evaluated by describing the reciprocal-lattice vector S 
relative to the axes associated with u,. Since F(S) is 
formed as the sum of various products of terms depen- 
dent on (S), the parameters describing each term may 
be associated with any axial choice, provided the axial 

choice is known. Failure to recognize this fact has led 
to the unnecessary complication of the algebra of 
group refinements by saying 

c~F(S) _ x:' 0F(S) 3v~ 
(2) 

where both S and the parameters v~ are defined with 
respect to a fixed reference frame of axes. However 
parameters need never be defined with respect to a 
common reference frame unless so desired. 

Parameters u~ need only be described in terms of 
other parameters v~ if we wish to use parameters which 
are combinations of parameters on different atoms and 
this combination may be evaluated using parameters 
v~ which are themselves defined with respect to what- 
ever reference frame of axes most simplifies the evalua- 
tion of OvJOuq. 

The advantages of refining parameters other than 
those associated with a single reference frame of axis 
a r e :  

(a) the results of refinements can be much more 
readily described, 

(b) the application of constraints has greatly sim- 
plified algebra, and 

(e) correlations between parameters may be reduced 
and more readily understood. 

Theory  

If (0,,,,d,,) is a symmetry operation where (Ora, d m ) r =  
Omrq-d,, then the structure factor may be described as 

F(S) = ~Fm(S) where 
m 

Fm(S)=exp (2rcidm. S) ~ a,f,(S)~u,(0,7,1S) ; (3) 
n 

a, is the occupancy factor, f,(S) the scattering factor 
and ~u,(S) the Fourier transform of the probability 
density function of an atom in the asymmetric unit. 
The use of the crystallographic unit-cell axial system 

simplifies the evaluation of din. S and 07~S=~.hmsbj 
Y 

where the hms values are simple combinations of the 
Miller indices (Busing, Martin & Levy, 1962). 

From (1) it is seen that 

i 2 
In ~,(S)=i ~ 1  Ksts+ ~.. ~ 2 lcJnktjtk 

j jk 
i 3 i 4 

+ 3] Sk,~a KSk,tjtkt, + -4~. jk,m~ 4 KSk,mts&t, tm (4) 

and since ~u,(S)= exp (ln ~,,(S)] it follows that 

O~,,(S) O In ~,,(S) 
~u~ - ~, .(S) 0u~ 

and 

0F(S) 
Ouq exp (2~zidm • S)a,f,(S)~,(Oj 1S) 

??In 

× O ln[a,~,(O~ 1S)]/c~u,. (5) 

A C 31A - 3 
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If we describe the qth parameter uq with respect to the 
pth orthonormal axial system, then 0,7,1S=~Pt,fl'B~ 

where 

PB~=~A, = ~ R.,,PUk,b~ = ~ PUg,(R-~)kjal 
jk jk 

and 
"tim= ~ PVkl(R-1)kjhmj . (6) 

The pth orthonormal axial system is related to the 
axial system A~ = at/a. A2 = Aa x A~, A3 = ba/b3 [Ak = 
B~=~(R-~)~jaj] by the pth unitary transformation 

J 
~B~ = ~ U~B~. 

k 
If a crystal structure has an inversion centre at the 

origin of the unit cell then 0m~S=--S for this sym- 
metry operation and V . ( - S ) =  ~,*(S) where ~,*(S) is 
the complex conjugate of ~,.(S). Thus two centrosym- 
metrically related atoms make a contribution to F(S) 
of f.(S)a,:[~,.(S)+~,.*(S)] and the differential of this 
contribution with respect to u~ is 

[ 3a.v,,(S) { c~a.~,,.(S) * 
Ou~ +,  ?~ ) ] A(s) l 

Refinement of the reference frame 

We can describe the reciprocal-space vector S with 
respect to estimates of the pth axial system by saying 

1 1 
where 

Ptt = ~ p~ p V ~S jl  , 
J 

~f]~=~V~Bk and 
k 

P VjlP Vkl =(~jk • 
1 

The PBj are the initial choice of axis directions and the 
~'B~ are the directions of the best choice of the pth axial 
system for describing the parameters associated with it. 

For the pth reference frame 

( C~C~ 
= - s ~ c ~  

s,  

c ,i) (i 00) Sa (73 1 Ct St 
0 0 \Sz 0 Cz/ -S~ C~ 

C38281 -~- & C  1 -- C 3 8 2 C  1 -~- & S  1 \ 

-- $3S2S1 + C3C1 $3S2C1 + GS~ ) (7) 
- C2S~ C~Q , 

where C~ = cos ~ ,  S~ = sin ~o~, i=  1 to 3. We see that if 
Ca = Sz = C~ = 1 then 

(i ~Vj~= 1 
0 , 

and 
--6t2 I~i121- ~i3 0 ) 

0 ~ Vj~/~o~ = 0 0 J .  + Ji3 
0 0 - fin • 

This possible ill-conditioning of matrices describing 
axial transformations is well known. However this 
problem is minimized by describing the axis transfor- 
mation relative to the initial directions for the axes in 
the unit cell rather than to the unit cell itself. In this 
instance our initial values of ~0~ are zero. making PVik= 
fijk and p VjklC~(O~ = euk where eUk = + 1 for a cyclic per- 
mutation of 1,2, 3, eUk = -- 1 for a non-cyclic permuta- 
tion of 1,2,3, and euk=0 otherwise. The approxima- 
tion P Vjk~--~jk+~e~jkA~O~ implied by the least-squares 

i 
refinement takes no account of the sequence of the 
three matrices making up PVjk but this effect is small 
if A~0~ is small. The ill-conditioning is minimized by 
putting the matrices in a sequence where the smallest 
A~0~ is associated with the second matrix when (7) is 
used to give the new axial directions PBt=P.~.~= 
~..PDjlAj where PfJjZ='f'UjkPVkz and Aj=B~ are the 
j 
orthonormal axes a~/a~,Az x A~,b3/ba to which all the 
unitary transformations are referred. 

Positional parameters 

Positional parameters are associated with the first term 
in the expansion of In V,,(S) described in (4). This term 
may be expressed as 2nir, .  S and r ,=PR+Prn where 
PR is the position of the origin of the pth axial system 
in real space and Pr,, is the position of mean of the 
probability density function of the nth atom measured 
relative to the origin of the pth axial system. 

We define the positional parameters using the most 
convenient axial systems. If we define rn by the best 
orientation of the pth axial system then 

"R=  ~ "X~P~k and "r,,= ~ "X,kPA k . 
k k 

We define 2nS using the initially assumed orienta- 
tion of the pth axial system saying 2nS=ZPtjPBs. These 

] 
directions are related by the transformation PBk= 
P-~k = ~P VskPBj where p Vjk is described in terms of par- 

] 
ameters ~0~ in (7). 

Thus 
2nirn. S = i  Z ("X~ +"xkn) "Vjk"tj 

kj 

and from (5) we see that this term makes a zero con- 
tribution to the evaluation of OF(S)/Ou~ unless uq= 
PJ(g, PX, s, or Cs. Thus 

(2nir. S)o = i ~ ~PX J ± PXAPt • k O ~  n /  j 

J 
(32nir, :S  /32nir,_: S 

c~'Xo ~ )o = \  c~PX, J )o =iPtj 

and from (7) when all ~0j =0  

(~2nirn.S) . ,  2 
? ~  ° = - t (  X,, "t3-"X~. "t2) 

( -~2nir'!-'---S-] = -  i(PXa. Ptl-PX1. Pt3) 
~ 2  ]o 
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and 
O2nir, .S)  

= -  i('X1. "t2 - ; X 2  Ph) (8) 

where the subscript 0 implies evaluation for the initial 
values. 

Higher-order eumulants 

The higher-order terms in the expansion of In gt,(S) 
are associated with the distribution of the probability 
density function of the nth atom about its mean and 
may be described with respect to any axial system. 
IfA~ = ~PUklPAI then rh = ~PUgltk and t k = ~PUklPtl. The 

1 k l 
values of the components of the cumulant tensors 
depend on the axial directions chosen to evaluate ts. 
Thus 

.x.~' = E x.~ . u  x.~= Z .x.~' , u  dJ', j j ' ,  
j j" 

~J.'~'= ~ 2KJ. ~ " u  ~ U ~Kj~= ~ 2 ~.j,~, p j j '  kk' ,  n ~., p'~n U j j , P U k k  ,, 
j k  j ' k"  

3 ~ j ' k ' l '  
~ . ~ .  = ~ 3 ~  . U ~ U ~ U j j '  kk' l l ' ,  

jk l  

3tom= ~ azJ'~'t" prr prr prr ~.,, ,~j ,  ~ ,  ~ , ,  etc., (9) 
j 'k ' l"  

where the symbol p denotes the reference frame for 
the cumulant and the omission of this symbol implies 
the orthonormal axes a~/a, A3 x Al, bJb3. Each tensor 
is invariant to pairwise interchange of the indices so 
that for a site of symmetry 1 there are 3, 6, 10, 15 
unique elements for tensors of order 1, 2, 3, 4 respec- 
tively. The components may be arranged so that 
j < k < l < m  and each component given a multiplicity 
corresponding to the number of distinguishable se- 
quences o f  j k lm .  

It is possible to contemplate refinement of the values 
and directions of the three principal axes of vibration 
as six refinable parameters but such a procedure is 
dangerous as most atoms are approximately isotropic. 
However it is possible to constrain the higher-order 
cumulants. For the cumulant tensor of order s an ar- 
tificial point symmetry can be assumed for the atom 
site, imposing restrictions on the possible components 
of this tensor. This is most easily done if the axial sys- 
tem is made to coincide with the most convenient direc- 
tions for the simplification of the tensor. In this way 
it is easy to include higher-order cumulants without 
over-parametrizing the refinement problem. 

Indeed it is possible to choose variables to describe 
the higher-order cumulants such that the imposition 
of a symmetry constraint simply implies that certain 
of the variables are zero. 

Thus 
2xJ~t:t~= Ai( t  2 + t 2 + t 2) + A2½(2t]- tl  2 -  t~) 

j~ 
2 2 +A3(t~- t2)+A42qt2+A52t~t3+A62tz t3  (10) 

making 

2/~12 = A4  , 2/(713 = A5  , 2/~23 = A 6  ' 

2Kll  = A l -  A 2 / 2  + A 3  , 

2x22 = A1 - A 2 / 2 -  A3 , 

2/~33 = A  1 + A 2 ,  

A1  = 1(2/{11 21_ 2/~22 + 2/L.33) , 

A2  = /£33  _ k(2/~l l  71_ 2K22 _]_ 2/c33) , 

A3 =½(2/~11 2K22) . (11) 

2xu, 2x22, 2t#3 have multiplicity 1 and 2x12, 2x~a, 2x23 
have multiplicity 2. If we choose the pth axial system 
to make the primary axis of the imposed point sym- 
metry parallel to PA3 and the secondary axis parallel 
to PA~ then for the following centrosymmetric point 
symmetries we only need to refine the parameters given 
in Table 1. 

Table 1. A parameters  to be refined 

Laue symmetry Parameters 
T A1A2A3A4AsA6 
2 / m  A1A2A3A4 
mmm A1A2A3 
~, ]gm, 4/m, 4/mmm, 6]m, 6]mmm AiA2 
m3, m3m A1 

Also 

3Mut f idz = B "l(})tl(t 2 + t~ + t 2) 
jk t  

' 3 t 2 2 2 +Bz(3)t2( l + t 2 + t a ) + B 3 ( { ) t 3 ( t 2 + t 2 + t  2) 

+ B'46qt2t3 + B'sq(3t 2 -  t 2) + B6tl(3t  2 _  t 2) 

+ B 7t2(3t 2 -  t 2) + B ~t2(3t 2 -  t22) + B 9t3(3t 2 _  t~) 

+ B ~ot3(3 t 2 -  t 2) 

making 

3tcm=(-} )B ' l -  B ' 5 -  B'6 , 3K222=(~)B'2- B 7 -  B'8 , 

3K333=(-~)B;-B9-B'10,  3K122----(~)B; + B ; ,  

3~¢2u = (½)B~+B7, a~AlX = (k)B; + B 9 ,  
3K133=(½)Bi+B;, 3K233=(½)BI+B~, 

3~22=(k)B; + Bio, BI=3K l~x +3K122+3x'33, 
Bi = 3x2u + 3K222 + 3x233 ' B;  = 3x3~ + 3~22 + 3K333 

and 3td23=B~. (12) 

However, although these functions have a certain 
attractiveness, it is better to use the expression 

atcJk'tjtktz = Bi(3)q( t  2 + t 2 + t 2) + B2(3)t2(t 2 + t~ + t 2) 

+ B3(3)t3(t 2 + t 2 + t2)+ B46htzt3 + Bsq( t  2 -  3t 2) 

+ B63h(t  2 -  t~) + B7t2(t2-  3t 2) + Bs3 t2 ( t ] -  t 2) 

+ B g ½ [ 5 t ] - 3 t 3 ( t ~ + t z + t ~ ) ] + B i o 3 t 3 ( t ~ - t ~ )  (13) 

where 

3 t 3 ( t z -  t2) = 6t3[(h + t2)/]/2] [q - t2)/ l/2] 

= t 3 ( t ] -  3t2 z) - t3(t 2 -  3t~) 

A C 31A - 3* 
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and 

5 t ] -  3t3(t 12+ t~+ t~)= t3(t~- 3t~) + t3( t] -  3t~). 

We then obtain 

3xm = (3)B~ + Bs,  3/.~222 = ( } ) B  2 + B7 ' 

a K a 2 2 = ( 1 ) B 3 - ½ B 9 - B z o ,  B1 = 3/¢ 111 -At- 3K'22 .hi- 3KIa3 ' 

92  = 3/1:211 ..[_ 3K222 .j_ 3K233 , .83 = 3K3,1 _~_ 3/17322 _~_ 3K333 , 

B~o=½(a/cm--aK 322) and 3x123=B4. (14) 

3/¢111, 3/(222 ' 3/C333 have multiplicity 1, 3~c122, 3/£'33, 
3K21l ' 3X233 ' 3/C311 ' 3/¢-322 h a v e  multiplicity 3 a n d  3/17'23 h a s  

multiplicity 6. 
If  we choose the p th  axial system to coincide with 

the imposed point symmetry as before then we only 
need to refine parameters in Table 2. 

Table 2. B parameters to be refined 

Point symmetry Parameters 
1 B, BzB3B4BsB6BTBsBoB~o 
m BxB2 BsB6BTB8 
2 B3B4 B9BIo 
3 B~ Bs BT B9 
mm2 B3 B9B~o 
3m B3 B7 B9 
~f B4 B~o 

135 B7 
4, 4mrn: 6, 6mm Ba B9 
222, gm2, 23, g3m B4 
32, ~m2 B7 
422, 432, 622, ] None 

Also 
E 4  jklm ~ 3 ' 2 2 2 2 ~c t j&ht~- ( z )c~( t~  + tz+ t3) 

jklm 
._1 I_ "1 2 2 2 C z ~ ( 2 t a - t ~ - t ~ )  (t2+t22+t 2) 

+ C ; ( t z -  t22) (tz + t~ + tz) + C a(2qt2) (tz + t22 + t z) 

+ C's(2qt3) (t 2 + t 2 + t2)+ C'6(2t2t3) (t 2 + t 2 + t 2) 

+ C~(6tzJ~.- t a -  ta) + c's(6t lt3z _ ta_  t~) 

+ Cg(6t22t23- t 4 -  t~) + C'~o(4&tO (t z -  3t 2) 

+ Ci~(4ht2) (tzz - 3t]) + C'~z(4t3t,) ( t ~ -  3t22) 

+ C~3(4hta) (t 2 -  3t]) + C'~4(4t3t2) (t 2 -  3t 2) 

+ C'~5(4t2t3) (t 2 -  3t~ 2) 

making 

4/~1111 = (3)C; _½C,  2 _[_ C . ; -  C ; -  C ; ,  

4K2222 = ( ~ ) C ; - - } C '  2 -- C ; -  C ; -  C ; ,  

',d 33~= (-~)cl + c ; -  c ; -  c ; ,  
" ~ , " ~ = ( k ) c ; - ( ~ ) c ;  + c ;  , 
4Kl133 -~-" ( } )C ;  Jr ( 1~2 ) C 2 -]- (~)C; -11- C ; ,  

4/t72233 = } C  i -t" ( 1 ~ ) C i -  (~)C; -t-. C ; ,  

c l =  (}) (c i '  + c 7  + c ; ' ) ,  

ci=(-~) ( c ; ' - c b  , 

c;=(-~) ( c i ' -  c';)/2 , 

C~ = ~ :m2-  (3-~) (4C'~'+4C'2"-C'3"), 

C~=/cu33-  (3-~) (4C'1'-C'2" + 4C; ' ) ,  

C9 = Ic2233- (3-re) (-C'~'+4C'2'+4C'a') ,  

where 
C i '  = 4Kl111 _[_ 4Kl122 _1_ 4Kl133 , 

C2'  = 4K2211 + 4/i72222 + 4/l~2233 , 

C ; '  = 4/£3311 -[- 4/43322 7 t- 4/£.3333 

and 

'x'233 = (+)c2 - c i 0 -  c h ,  
41.(.1322 = (17 ) C  ; '  - C ;2 - C ;3 , 

4/£23,1= (71)C,6, - C ; 4 _  C;5,  4K12,1~_ (~)C;' -]-- C;o , 

4K'3" = (~)C;' -].- Ci2 , 4K2322 = (3)C; '  -.]- C;4 , 

4/~'222 = ( ~ ) C ; '  dl- C ; l  , 4K1333=(3 )C; ' . q -  C i 3  , 

4x2333 = ( 3 ) C  ;' .AI-C '15 , C'4=(~7)C'4" , C ; = ( ~ ) C ; "  , 

c;=(~)c2, 
where 

C '  4' -~- 4K1211 -t- 4t¢'222 --~ 4/171233 , 

C ; '  = 4/(:1311 21- 4/171322 -~- 4K1333 , 

C '  6, = 4/(2311 + 4/(:2322 + 4/172333 " (15) 

4/i71,1, ' 4/£.2222, 4/(3333 have multiplicity 1, 4x 'm,  4x1222, 
4/17131, , 4/(1333, 4K2322 ' 4/t:2333 have multiplicity 4, 4xn22, 
4R71133 ' 4/(2233 have multiplicity 6 and 4/£,233, 4/(,322, 4/£.2311 

have multiplicity 12. Again, al though these functions 
have a certain attractiveness it is better to use 

E 41¢Jkt"tJ tkt'tm=(})Cl(t~ + t2 + t32) 2 
jklm 

+ (~)C2½(2t2- t ~ -  t~) (tz + tz2 + t2) 

+ ( 6 ) c 3 ( t ~  t~,) ~ ~ - -  (tz Wtz-l-t3) 
+ (6)C4(2txt2) 2 2 2 ( t x + t2 + t a)+ (6)Cs( 2tl ta) ( t ~ + t ~ + t2a) 

+ (~)C6(2t2t3) (t 2 + t 2 + t 2) 
+ 2 2  2 2  2 2  2 C7215(t ~t 2 + t ~t 3 + + t 3) ] t z t3 ) -  (tl + t~ 22 

+ Cs(2) [35t 4 -  30t 2(h 2 + t z + ta 2) + 3(t~ 2 + t 2 + ta2) 2] 

+ Cg(t~- t 2) [7t2- (t ~ z + t~ + t~)] 
+ C,o(2fit2) [7 t~-  (t ~ + t 2 + t~)] + Cn(4qt2) ( t ~ -  t~) 

+ Cx2(4taq) (3t22- t 2) + C~(4tatx) ( t ~ -  t 2) 

+C~4(4t3t2) (3tz-t~)+C~K4t3t2) ( t ] - t 2 ) ,  (16) 

where 

lO(t2t22+ 2 2 2 2 t2+t~)2=(6t2 t~_t~_t~)  t l ta+t2t3)--2( t2+ 
2 2 4 4 + ( 6 t x t a _ t l _ t a ) + ( 6 t ~ t  2 _ t z _ t 3  ) 4  4 , 

35t 4 -  30ta2(t ~ + t~ + t 2) + 3(t 2 + t22 + t2) 2 
2 2 4 = (6t xt 2 -  t ~ -  t42)- 4(6t ~t~-  t ~ -  ta 4) 
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2 2 4 4 -4(6t 2t a - t 2 -  t3), 
(t~-t22) [ 7 t ] -  (t 2 + t 2 + ta2)] 

= (6t2t~ - t~ -  t~)-(6t~t~-  t 4 -  tag), 

2qt2[7t2-(t~ + t~ + t~)] 

= [4qt2(at~- t~) + 4t2q(3t~- t ~2)]/2, 

4qt2(t~- t~) =4tlt2(at~- t~)-4tEq(3t 2 -  t~) . 

Thus 

4~:,.1. = (~-) c .  - (-~) c2 + ( ~ ) G  - :2c~ + (~)cs - c9 ,  

",c 22~ = (~)c .  - ( - ~ ) G -  ( ~ ) G  - 2c :  + (~)cs + c9 ,  

",c 33~3 = (-k)G + (6)c2- 2c7 + (~)c8 ,  

4,c'~2 = ( k ) G -  (k)c2 + c~ + (~z)c8, 

4/~1133 : (1)C 1 -~- (1-~) C2 "-~ (+)C 3 "31- C7 -- (8)C8 71- C9,  

4 ~  = (~)G + (~)c2-  (k)G + c ~ - ( ~ ) G -  G ,  

G=c'~, 
c2=c '~ ' -  c ;  , 

G = ½ ( c i ' - c ' ; )  , 
c~= (~) (8c~+c'~+c;),  

Cs=¼(2C '7 -C ; -C '9 )  , 

G = ½ ( c ; - c ; )  
and 

4~233_ (1~ c + C 4~s22 = (})C~ + G2 
-- .7./ 4 10 , 

41(~2311 = ( ~ ) C  6 + C14, 4K1211 = (3)C4 - ½C10 + C l l ,  

41f.1311=(3-)C5-C12-C13, 4if,2322= (~)C6- C14- C15 , 
4,c'222=(~-)c4-½c10- c . ,  ",c'~g=(¢)G + G3, 
4,c2333=(~)c~ + G ~ ,  G .  =½("x ~2"-4,c'2~) , 

C4=C'4', Cs=C's ' ,  C6=C'6 ", (17) 

where C~, C'7, Ca, C9, C~', C~', Cj', Ca', C;', C'6' are pre- 
viously defined, see (15). 

If  we make the pth axial system coincide with the 
imposed point symmetry as before then we only need 
to refine the parameters in Table 3. We note for the 
case of 4/mmm symmetry a single parameter C7 may 
be used if C7=C'~=C'9 whereas if C ~ = C 9 = 0  then 
Cs=(~)C~. 

Table 3. C parameters to be refined 
Laue symmetry Parameters 

i ClC2C3C4C5C6C7C8C9C10CllC12C13C14C15 
2/m C~C2CsC4 C.,C~C~C, oC~, 
mmm CIC2Cs C7CsC9 
4/m CIC2 C7C8 Clt 

G C2 Cs C12 
4/mmm C1Cz C7C8 
]~m C1C2 Cs 
6/m, 6/mmm C1C2 Ca 
m3, m3m Cx C7 

C14 

C14 

The interpretation of the parameters At ( ix  1 to 6), 
B~ ( i=1 to 10), and C~ ( i=1 to 15) may be readily 
understood using the Edgeworth expansion of the 

probability density function (Johnson, 1970; Rae, 
1975a). The probability density can be defined as an 
expansion 

m 
~t(U)~[1 a t- ~ Qj(u)]~t0(u) 

j= l  

using up to the (m+2) th  cumulant. Rae (1975a) has 
pointed out that if the normal distribution 

7/o(U) = [det (p)]U2 exp { - ½  ~ p i k ( U J - - X J ) ( U k - - x k ) }  
(2703/2 2t~ 

is chosen such that 

kl 
and 

where 

then 

where 

2~jk ~21cJk- -  tTJk ~- k ~ 4Kjklmplm 

lm 

~_~ (TJk'.Pkl = ~j l  , 
k 

1 Ql(u)= ~ ~ 31~Ik[zIzkz ` 
Jilt 

zj= ~ pi,(u ~-  x~) , 
k 

1 Q2(u) = ~ ~ 4T.~jklm7 7 7 7 1 ~. 2~l, Jkmimlc. ,~, z.,jZ.~mZ_,iz_, m - -  -~ .--. 
jklm jk 

jkl pqr  

- 9zjz~z~z~p,, + 18zjZ~p~p,,-6pj~p~p,3 
(18) 

and the position u = x is a position of maximum prob- 
ability of value ~U0(x ) to a very good approximation. 

We note that if the parameters A2 to A6 are zero then 
the parameters B4 to B10 make no contribution to 12 
and the parameters C7 to C15 make no contribution to 
22 in (18). In this instance 

121=B1/ZA1, 122=B2/ZA1, 123=B3/2A1, 
(2211 _jr_ 2/],22 _}_ 2233)/3 : C~/4A1, 

2~33_ (221, + 2222 + 2233)/3 = c2/4A,, 
(22n-2222)/Z=C3/4A1, 2212=C4/4A1, 

22as=Cs/4A1, 2223=C6/4A1. (19) 

Also Zj is simply (uJ-rJ)/A1 and the shapes as- 
sociated with the terms B~,C~ in (13) and (16) are ob- 
tained by replacing tj by (u j -  rJ)/A1 for incorporation 
in (18). 

For the case when A2 to A6 are non-zero, Rae (1975a) 
has suggested modified expressions to replace the terms 
involving B1 to B3 and C1 to C6. It is noted that 

½ ~ 3tf'lJklPgl=l~'J 
kl 

i f  

3tqJkt = (~) d.,!.Jd't + W'o -u + 12o-J~) 
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where 3xj~ is the component ofaK Jkt that leads to a non- 
zero value of ~2. We can then retain the expression 
~M=B/2A~ from (19) if we replace the terms 

({)Bfij(t 2 + t 2 + t 2) in (13) by 
j=l 

3 
a~cJ~'tfld,= ~ ({)Bjtj ~ autkhlA,. (20) 

jkl j= 1 kl 

Likewise it is noted that 
2~j~= ¼ ~ 41cl.j~lmpl m 

lm 

where 

41~Jklm=(~) (2~jk~lm 27 2~ImGjl~ ~_ 2~jlakm 

+ 2 ~ a ~  + 2~ugj~ + 2~jmgk~) 

2~jk=2~jk.~_(1)~jk ~ ~lmplm. 
lm 

Now if we define 2{ ~ and 2~2 ~ as 2{~= Al~,~Jkpkl and 
k 

22J~ = A~,V~p~ then 
k 

al~- (~p + 2~ + 2 ~ ) / 3 - - ~  ~.x ± ~ - -  "~2 - -  t ' ~ 2  T - t -  ) , ~ 3 ) / 3 ,  

( ; q , -  ~12)/2 = (.,v? - .z~2)/2, 

2~,2_ o~,2 2213= 22~a 2223 221a 
~I -- ' ~ 2  , , 

but 

(A.I' + 2, ~2 + A?,3)/3 = ( ~ )  (2~ ~ + ,,1.~ 2 + ,,1.~.3)/3 • 

We can obtain a modified version of (19), namely 

(2211 -t- 22212 -1- 22~3)/3=C~/4A~, 
2 ~ p _  (2~I, + 2~22 + 2~I~)/3 = CU4A,, 
(22p-zA22)/2=C3/4A~, 2212=C4/4A~, 
2~P= C d 4 ~ , ,  222a=c6/4A~, (21) 

if we replace the terms corresponding to C~ to C6 in 
(16) by 

~ 4~jklm~ ~ ~ ~1 *j*k*l~m:(-~-) ~ ~Jktjtk ~. Glmtltm " 
jklm jk lm 

Substituting ~y2"a"k/At for ,V k, we obtain 
B 

~ 4t,.Jklm# ~ ~ r~l ~j~kLl~ m 
jklm 

=[({)Ct ~ aJktjtk + (-~)C2½( ~ 3aaJtatj - ~ aJktjtk) 
jk j jk 

+(~)Ca ~ (61Jtlt j-a2Jt2tj)  
J 

+(~)C4 ~ (aut2tj +t72Jqtj) 
J 

+({)C5 ~ (GUtatj+o~Jhtj) 
] 

+ (,~)C6 ~ (a2Jt3tj+aaJt2tj)lx ~ cr~mhtm/A~, (22) 
j ~m 

where symmetry constraints apply exactly as before. 
We may describe the Fourier transform of the prob- 

ability density function g/(u) as a product 

$7 I ~(t) . . . .  exp (it .  u)~(u)du~du2du a 
o o  t ~ - - o o  

= ~'~(t)v2(t), 

where 

S S g~(t)= _ . . .  _ e x p  [it. (u-r)]~l(u-r)duldu2du 3, 

v2(t)= I7~  "'" 17~ exp(it'r)~2(r)drldr2dr3 

and 

g~(u) = I 7 . . .  17~o ~l(u-r)~'2(r)drldrZdr3. (23) 

We can of course only observe the overall transform 
g(t) and not the components ~( t )  and V2(t). How- 
ever this separation can be useful to distinguish inter- 
nal molecular motions from rigid-body motions. The 
former are calculable from spectroscopic results and 
are generally of smaller mean-square amplitude. Equa- 
tions (21) and (22) make corrections for ~2 j and 2Mk 
for an overall probability density function ~(u). How- 
ever the overall cumulant terms associated with par- 
ameters B4 to B10 and (77 to C~4 are more likely to be 
associated with internal molecular motions and there 
seems little reason to alter the form of these expressions 
from that in (13) and (16). 

It is also possible to describe the electron density 
of an atom as the sum of two electron densities, one 
for the inner-shell electrons and the other for outer- 
shell electrons. The means of these two distributions 
need not coincide. The outer-shell electrons may be 
described using cumulants which are not the same as 
for the inner-shell electrons, and if we describe the 
Fourier transform of the probability density function 
for the outer-shell electrons as v~(t)v2(t) where v2(t) 
is obtained from the cumulants for the inner-shell 
electrons, then the factor v~(t) describes the perturba- 
tion of a stationary outer shell of electrons associated 
with the atom's environment. The ability to choose 
axial systems to facilitate constrained refinement en- 
ables a limited number of meaningful parameters to 
be used to describe this perturbation. If ~,x(t)= 1 the 
mean of the unperturbed outer shell of electrons moves 
during vibration so as to be coincident with the mean 
of the inner-shell electrons. 

Rigid-body motions of groups of atoms 

Schomaker & Trueblood (1968) have indicated how the 
thermal vibrations of a molecule may be analysed on 
the assumption that the major contributions to the 
molecule's motion arise from motion of the molecule 
as a rigid unit. Johnson (1970) has discussed the use 
of a segmented-body analysis to describe pieces of a 
molecule moving as a rigid unit. Uncorrelated motions 
may be treated by regarding the temperature factor of 
an atom as the product of more than one temperature 
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factor, see (23). Thus one can include factors obtained 
from spectroscopic information and from uncorrelated 
motions of rigid groups of atoms containing various 
numbers of atoms. The freedom to choose the origin 
and direction of the reference frame of axes makes con- 
strained refinement easier, as a specific choice of axial 
system and rigid-body motion greatly reduces the num- 
ber of refinable parameters. A lattice-dynamical treat- 
ment of molecular rigid-body vibration tensors (Sche- 
ringer, 1973) shows that an axial system correspond- 
ing to the principal inertial axes centred at the centre 
of mass is the ideal axial system for isolated molecules 
or ions in a crystal. Such a choice of axial system is 
unique. Busing & Levy (1964) have discussed the effect 
of thermal motion on bond-length estimates, emphasiz- 
ing that the joint distribution of the motions of the 
atoms must be known or assumed if proper correc- 
tions are to be made. Corrections for the displacement 
of the mean from the position of maximum probability 
using (19) and (20) can be imposed on the form of the 
temperature factor if so desired. 

Following the procedure of Schomaker & Trueblood 
(1968), the average motion of an atom at r .=~PX,  k ~'A~ 

is given by 

U = ~  , , v~x~  
kl k 

where 
PA ijkl = ~ Eimk~jnlPtmn 

mn 
and 

" B ~  = ~ (e~.~PS.j + e~.~S.~). 
n 

The superscript p indicates the pth reference frame 
but will be omitted since (25) and (26) are not depen- 
dent on the axial system; we will always assume we 
are using the most convenient axial system. In par- 
ticular for the nth atom 

Ul l  3 3 2 2 2 3 3 = L z 2 X n X n  -F L 3 3 X n X  n -- 2 L 2 3 X n X  n -}- Szl2X. 
- &~2XZ. + T.  

= - - L 3 3 X n X  ~ --  U12 1 2 3 3 2 3 1 3 + L z 3 X n X n  + LlsX.X.  Lt2X.X. 
(Sil 3 i --  -- 822)X  n -Jr" S 3 t X  n - S3zXZn + T12 etc .  (24) 

Rae (1975b) has shown that all meaningful constraints 
on the TLS model can be achieved by judicious choice 
of axial system and using the variables 

Dt=(Ln + L22 +/-,33)/3, D2= L33-(Ln + L22-}- L33)/3, 

D3 = (Llx-  L22)/2, D4 = L12, D5 = t 1 3 ,  D6 = L23,  

E i  = (Tal + T22 + T33)/3,  E 2 =  T 3 3 -  ( T u  + T22 + T33)/3,  

E 3 = ( T . -  T~2)/2, E,= Tx~, E~= T~, E6= T~, 

F 1 = C23S23 - C32832 , F2 = C31S31 - Cx3813 , 

F~=A~SI~-C~&,, F4=C~&~+C23&~, 
F5 = C13S31 "Jr- C31813 , F 6 ~-~ C21S12 AF C12S21 , 

Fv=(2S33-S1,-Sz2)/2, Fs=S~a-Sz2, 
where C,~+C~,= 1 . (25) 

We note that 811 .qt_ 822 "t- 833 cannot to be determined. 
The expression N U J : j  can then be written as 

U~t, tj= Dl(t" ~ + 7~ + ~'2)+ D2(2~'3 _ t ~ _  7~)/2 
ij 

+ D3(7~,-7~)+ 2D4.71 t~ + 2Dst'x t~ + 2D672}'3 

+ E~(t~ + t~ + t~) + E2(2t~- t~ -  t~)/2 + E3(t~- t~) 

+ 2E4ttt2 + 2Est, t3 + 2E6t2t3 + 2F~(C2~2t3-C3~3tz) 

+ 2F2(C3(t3q- C1~1t3) + 2F3(Clz't, t z -  Czl"t2t,) 

+ 2F4(C3z'izt3 + Czj3G) + 2Fs(C~ft3h + C3,qt3) 

+ 2F6(C2,'t~t2 + CI 32ti)+ 2F773t3 + Fs(txq-Tat2), 
where 

= X n t 3  XSnt2, ^ 3 x 
- t 2=X. f i -X . t3  and 

"is= X~.t2- X2.fi . (26) 

If the axial system is chosen to be parallel to the prin- 
cipal libration axes then the definition of C~j as Ctl = 
Lu/(L~i +L~j) ~/2 allows the parameters F~ to F6 to be 
associated with the axial system that best describes 
the average motion (Rae, 1975b). Symmetry constraints 
on Dt, E~, i=1 to 6 are those of A~ to A6 in (11). If 
we choose our axial directions PAk to coincide with 
the imposed point symmetry (primary axis=PA3 and, 
if applicable, secondary axis = ~'Aa), then we only need 
to refine the independent F~ parameters given in 
Table 4. 

Table 4. F parameters to be refined 
Point group Parameters 
1 FIF2FsF4FsF6FTF8 
2 F3 F6FTF8 
m FxF2 F4Fs 
222 FTF8 
mm2 F3 F6 
3 , 4 , 6  F3 F7 
4[ F6 F8 
32, 422, 622 F7 
3m, 4mm, 6mm F3 
~[2m F8 
~, Sin2, 23, g32, ~3m, 1" None  

It is not necessary to refine positional parameters 
using the same axial system. Likewise, not all thermal 
parameters need be defined with respect to the same 
axial system. As seen from (5), it is only necessary to 
define the axial system used to define the qth param- 
eter. Choice of axial system allows sensible con- 
strained refinement to be simply the choice to refine 
or not to refine a parameter. 

The interpretation of the TLS description of rigid- 
body motion uses an axial system parallel to the prin- 
cipal axes of the L tensor located at the centre of ac- 
tion, which is defined as the unique point which makes 
S~j=S~. Parameters TIj, L~j,S~j where ~S'u is un- 

i 
determinable are obtained using the pth axial system 
PAj=~PU~jA~ located at ZXotA~. The principal axes 

i i 
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of the L tensor are defined relative to this axial sys- 
tem a s  ~,~kk=~PVjkPAj=~.P~_flkA t where P(Jik= 

j i 
p p ~, U~j Vjk. Keeping the origin fixed we redefine the 

J 
T,L, S tensors for the ~.~ axis system as 

PTk,= ~ T~j PVikPVjt , PS'kt= ~ S;j PVikPVjl , 
q o 

= Lb" V ,d  , 
6 

where ~L~ = 0 for k # l. As ~(~ij p ~ k  p Vii  = ~kl it is seen 
q 

that the assumption of a zero value for YS~j does not 
q 

alter the values of PS~j and PS;~-PSjj when iCj. 
The ~dk axes are then relocated at 

where 

and 

i i k 

+ "LS)  
ij 

k 

This redefines the elements of the TLS tensors (Rae, 
1975b) as 

-"e = (.£..sj, +.L..sb)/ 

("£u + P£jj) for i # j  PSi , - "  ~ ,  jj="gh-"Sjj 

[("& + 

-"Laa"X~"X~] etc., (27) 

where the terms in square brackets are obtained from 
the previous equations and the remaining values of 
Pf'u and PT~j are obtained by permutation of indices. 

We thus obtain new starting parameters for the next 
refinement cycle. The position of the nth atom at 
~X,~A~ with respect to the pth axial system P-~k at 
i 

Z)~0~A~ is given by ~PX, kp Ak where pXk.=~(X i -  
i k 1 

~'oi)~0~ for the evaluation of ~/values in (26). 
It has been shown (Rae, 1975b) that the TLX con- 

straint is equivalent to setting F~=O, i=4 to 8 in this 
localized axial system and the application of this con- 
straint at this stage does not alter the values of U~ + 
U22 + Uaa for any atom. Nor does it alter the displace- 
ment of the mean from the position of maximum 
probability for any atom. 

Correction of interatomic distances 

Approximations of these corrections have been sum- 
marized by Johnson & Levy (1974). Rae (1975a) has 
shown how a displacement of the mean of the prob- 
ability distribution of an atom from the position of 

maximum probability may be described using param- 
eters B,  B2,Ba [see (21)] where 12~ is the component 
of the displacement on the ith direction and is given 
by Bd2A~, i=  1 to 3. The mean-square motion of an 
atom in a rigid group may be considered to arise from six 
non-covariant con,tribution~, i.e. three screw rotations 
and three translations. For the origin at ~A>~A~ the 

i 
screw rotations may be described as parallel to the 
principal axes of the L tensor but displaced from this 
origin by amounts given by the parameters F4,Fs, F6 
(Rae, 1975b). 

However the displacement of the mean from the 
position of maximum probability for the nth atom is 
only dependent on the libration tensor L and the dis- 
tance from the centre of action. For the principal axis 
system P-~k at ~2o~At this is given by 

i 

P2k.=-%Y~(PLu+PLn)/2, ( i~ j~k) ,  (28) 

where PA>.I,P~', 2, p~-3 is the position of maximum prob- 
ability and P2,k=PX,k--PX. where PX~,,pX2,,pX~ is the 
position of the mean relative to the localized origin. 

Riding motions 

The total correction of atom positions for libration is 
evaluated as the vector sum of corrections for individ- 
ual uncorrelated components of each mode seeing an 
atom at the mean position for all other modes. The 
most probable position is regarded as being where all 
amplitudes of vibration and libration are zero. For 
example, an H atom on a phenyl ring may be thought 
to have an extra libration component in excess of the 
C atoms with a centre of action at the mean position 
of the adjacent C atom. Thus the component of 12 
along the C-H bond direction arising from this motion 
is given by - o ( 2 d  where d is the bond distance and 
is the mean-square displacement of the H atom normal 
to the bond in excess of that predicted assuming the 
H atom has no excess libration. The contribution of 
those higher-frequency normal modes which do not 
maintain the rigid nature of the phenyl group may be 
evaluated spectroscopically and thus the corrections 
for excess vibration of H atoms in the phenyl group 
may be made empirically. 

The use of segmented-body analysis (Johnson, 1970) 
with constraints on the TLS model for each segment 
may require the superposition of a number of correc- 
tions such as given in (28). However the use of con- 
straints on the principal axes of libration and the centre 
of action presupposes a knowledge of intersegment 
correlation. It should be noted that a TLX constraint 
does not alter the value of Uu + U22 + Ua3 for any atom, 
nor does it alter the displacement of the mean from 
the position of maximum probability for any atom and 
is often sufficient constraint for small segments to ob- 
tain sensible refinements and hence sensible values of 
12. The use of variable parameters B1,B2,B a for an 
atom complctcly avoids the need for rigid-body models 
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to try and obtain correct atomic positions. However 
rigid-body models use far fewer variable parameters. 

Constrained refinement 

If we have two different sets of n linearly independent 
real variables related by the transformation 

AUj = ~ PjgAVk , (29) 
k=l 

then changing variables causes the least-squares equa- 
tion 

~ AtjAu~ = Bt 
j = l  

to become 

P nAjkPk,Av,=Z P.nBj or 
j,k,l= 1 j 

~ C ,  Avt=D~, (i=1 t o n ) .  (30) 
l=1  

If the (m + 1)th to nth variables Art are constrained 
to have certain fixed values then we solve the m equa- 
tions 

m 

CuAvz=D~- C.Avl ,  i=  1 to m (31) 
I=1 l = m + l  

and evaluate values of duj using (29). 
If the differentials 31Ouj refer to single-atom param- 

eters, the transformation to (30) may be done either 
after the evaluation of A~j or directly using differen- 
tials O/Ovk-- ~,PjkO/c3uj. 

J 
The transformation matrix Pjk can be generated 

from an auxiliary program and provision made for a 
transformation of the type (29), (30), and (31) to be 
standard procedure. By arranging the sequence of the 
variables Auj it is possible to block-diagonalize the 
matrix Pjk. 

Positional-parameter constraints 

It is possible to refine changes in internal coordinates 
rather than positional parameters. The use of an or- 
thonormal axial system to describe positional param- 
eters allows the application of concepts used for the 
analysis of normal-mode analysis of vibration (Wilson, 
Decius & Cross, 1955). If we have N atoms we have 
3N degrees of freedom to describe changes in posi- 
tional parameters. The change in the tth internal CO- 

3N 
ordinate is given by A s t = ~  BriAr J where Bt.t=(Ost/ 

j = l  

Or j)0, where rj is a positional parameter X~(n = 1 to N, 
i=  1 to 3) and the subscript 0 implies evaluation for 
all Ast=0. Thus 

3N 

t = |  

provided we pick a set of 3N linearly independent in- 
ternal coordinates and 

3N 

j = l  

allowing the concepts of (29), (30), (31) to be applied. 
Values of (3/3St)o for rotation and translation param- 
eters ((& and X0 ~) have been given earlier in (8). 

It should be noted that st can be a linear combina- 
tion of bond lengths or bond angles. Bonds can be 
made equivalent by constraining the difference be- 
tween the bond lengths to change by an amount to 
make the bond lengths equal. If a symmetry con- 
straint is imposed the only non-zero changes in inter- 
nal coordinates are those which maintain the equiv- 
alence required by symmetry. 

The B -1 matrix is of dimension 3N so that ways 
of reducing storage requirements warrant considera- 
tion. One method is to use artificially created displace- 
ment modes, v', so that Arj = ~,Ri'Avn where Rj" gives 

n 

the value of Arj when Avn=l,  Arm=0 (re#n). Thus 
(3/3v,,)o = ~,R1,,(3/cgrj) o. These modes are created in such 

J 

a way that the nth mode does not alter the (n+ 1)th 
to 3Nth internal coordinates and need only involve as 
many non-zero values of Rj, as necessary to make this 

3N 

possible. We note Ast = ~St,, where St,, = ~.. BtjRj,, if 
n j = l  

the amount the tth internal coordinate changes when 
Av,,= 1, Av,,=O(m#n). Constraints are then imposed 
by giving the (m + 1)th to 3Nth values of Av,, fixed values. 

It is possible to cut the structure up into segments 
where no constraints are imposed on the linkages be- 
tween segments. This enables any constraint to be im- 
posed within segments and enables the most con- 
venient axial system to be chosen for each segment. 
For example if certain atoms in a segment are con- 
strained to be planar an axial system may be chosen 
so that PX, 3 = 0 for these atoms. The axial system may 
be refined by allowing X~, (01 and ~0z to change value. 
An atom on a special position such as x,x ,z  may be 
refined by defining an axial system rather than writing 
a patch for the least-squares program. The axes are 
chosen so that the allowed degrees of freedom for such 
an atom correspond to changes in axial directions. 

It is also possible to achieve equivalence between 
comparable groups of atoms by the use of pseudosym- 
metry operators. We define a different axial system for 
each segment in such a way that the position of an 
atom in segment 1 relative to the axial system for seg- 
ment 1 is equal to the position of an atom in segment 
2 relative to the axial system for segment 2. A change 
in atom positions within a segment relative to its axial 
system is then common to the two segments if equiv- 
alence is to be maintained. It is seen from (5) for the 
evaluation of 3F(S)/3uq it is only necessary to say that 
the parameter u~ describing the n'th atom is the same 
as the parameter u~ describing the nth atom for the 
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value of OF(S)/Ou,~ to be an easily programmed quan- 
tity. 

The orientation and location of the axial system for 
a segment relative to its initial position are refinable 
parameters. Linear independence of variables must be 
considered since it is not possible to refine simulta- 
neously all atom positions in a segment as well as all 
the axial systems. This problem can be avoided if the 
axial system for one segment is fixed. 

A special case of equivalent segment constraint is 
when a molecule of inherent symmetry is located at a 
position of lower symmetry in the unit cell. The in- 
herent symmetry can be imposed as a constraint by 
describing each pseudo-equivalent segment by its own 
axial system. All these axial systems have a common 
origin and have a fixed relationship to a reference axial 
system VAj, at the same origin ~PX0 ~ PAj. Changes in 

] 
the atom positions within a segment relative to its 
axial system are then common to all segments. How- 
ever only the orientation and location of the reference 
axial system PAj can be refined if the symmetry con- 
straint is to be observed. This axial system is refined 
relative to its initial position using initial positions de- 
scribed in the PA r axial system for the pseudo-equiv- 
alent atoms. 

Conclusion 

It has been shown that it is possible to write a program 
for least-squares refinement so that meaningful con- 
straints can be applied by simply deciding whether or 
not to refine certain standard parameters. This choice 
is made possible by the use of a number of orthonormal 
axial systems. The systematic removal of constraints 

is also possible in such a system and the significance 
of those parameters which remove a constraint is more 
easily assessed. 
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A simpler derivation of the equations of Schomaker & Trueblood [Acta Cryst, (1968), B7,4, 63-76] is 
given. It is shown that the ready interpretation of the meaningfulness of refinable parameters is best 
achieved by selecting the centre of action as origin and describing the motion with parameters defined 
relative to the principal axes of libration. A choice of 20 variables is made so that all meaningful con- 
straints on the TLS model correspond to certain of the variables having zero value. It is shown that the 
five parameters that distinguish the TLS model from the TLX model do not alter the mean-square dis- 
placement of any atom. Neither do they alter the displacement of the mean from the position of 
maximum probability for any atom. 

Introduction 

There is an unfortunate tendency in X-ray crystallogra- 
phy always to describe structures relative to crystal- 

lographic axes. If a non-crystallographic axial system 
is used to describe some feature of a crystal structure 
then it is only necessary to know the relationship of 
the origin and orientation of the axial system with 


